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The solution of the non-self-similar problem of explosion in a medium with 

variable initial density whose distribution is subject to power law is considered 

with variable initial pressure taken into consideration. An exact analytical solu- 

tion is obtained in particular cases for the initial phase of explosion. The depen- 

dence of dimensionless parameters of motion on the geometric coordinate and 
the shock wave radius, which is obtained by solving differential equations, is de- 
rived in the solution of the complete non-self-similar problem. Derived solu- 
tions are used for calculating cases of spherical and cylindrical symmetry of 
explosion for various values of the determining parameters. 

The one-dimensional self-similar problem of a strong point explosion was 
formulated and solved by Sedov [1, 21 on the assumption that the initial pressure 

of gas, which is small in comparison with the pressure at the front, can be neg- 

lected and that the initial density is constant. Strong explosion in a medium of 

varying density dependent on the geometric coordinate according to the power 

law was considered in fl, 31. When counterpressure is taken into consideration, 
the problem becomes non-self-similar. Its numerical solution appeared in seve- 

ral publications [4 - 91, in which initial pressure was assumed constant. 

The non-self-similar problem of explosion in a medium of varying initial 
density P1 and varying initial pressure pr is considered here. These parameters 
are defined by p1= Ar-m, pl = 0-X (0.1) 

If H. = 2~ - 2, then, in the presence of a gravitational field, the initial density 
and pressure distributions (0.1) satisfy the equilibrium equations of the medium 
D]. A particular case of this problem in linearized formulation for 3~ = o was 
investigated in p2, 133. 

Considerable calculation difficulties encountered in non-self-similar problems 
have led to the appearance of several approximate methods [3-7, 111. Sedov 
had suggested to construct approximate solutions of problems of unsteady motion 
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of gas within a shock wave by using interpolation formulas for the basic functions 
defining the motion of gas D]. 

It is shown here that in investigations of explosion in a gas of varying density 

and initial pressure (0.1) interpolation formulas can only by applied to one func- 
tion of gas motion. The remaining values are determined by exact equations of 

motion. The coefficients in interpolation formulas can be determined by the 

general and boundary cdnditions of the problem, as is done in approximate theo- 
ries of the boundary layer. 

1. Statement of problem and fundrmental equations, Ingasdy- 
namics one-dimensional perturbed motion of a medium in an explosion is defined by a 
system of equations of the form r2] 

a,:: + -- L$+$% =o, L$ + g + (v -,” PJJ = () 

$+ u~+,P,(~++)=, (1.1) 

where t is the time, r is the Euler coordinate, u is the velocity, p is the pressure, 
p is the density, y is the adiabatic exponent, and v = 1, 2, 3 in the case of plane, 

cylindrical, and spherical symmetry, respectively. The problem of explosion requires 
that the solution of the system of Eqs. (1.1) satisfies at the shock wave front (r = r2) 
three boundary conditions 

1’ (?-2. t) = Lb, E) Cr.?, 4 = fh, p b-, 4 = Pi (1.2) 

where 

Slq = --$ [i - $1) p* = J$ p,[l + _L$]-’ (1.3) 

231c? r y _ 1 a:! 
p2= -+-Jl’--- 

1 
dr,! 

2r & 9 C=x, a2= F 

Functions 1;;! (t), pz (t) and p2 (t) are a priori unknown, and their determination is 
tantamount to the determination of the shock wave radius r2 (t). At the center of sym- 

metry we have in addition to conditions (1.2) the boundary condition for velocity 

v (0, t) = 0 (1.4) 

At the instant 2 = 0 the finite energy E, is released and the following initial condi- 

tions are specified : vo", 0) = 0 o(r, 0) = h-o 

p(r, 0) = Cr-", r2(0) = 0 (1.5) 

The system of determining parameters shows that, if the dimensionless values 

r=+> g=$, 2 h= + (1.G) 

are taken as the unknown functions, these will depend on two dimensionless variables 
for which we select 

“=7r;, 
a? 

q=co” u1 = a (r2) (l.i) 

and on constant parameter< V, 17, w and X. 

2. Solution of the problem in a lfneariled formulation. In the 
initial phase of an explosion, when the explosion wave is still fairly strong, the variable 
Q is small and the solution of the stated problem can be derived by the method of 
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linearization with reference to the known self-similar solution. In dimensionless varia- 
bles (1.6) and (1.7) system (1.1) is of the form 

(r-i +2q) 127 - (T--1)9] 

- 

(2.1) 

(0 = 0 

We introduce dimensionless radius and time and, also, the dimensionless radius of the 
shock wave 

R=G, 7 l&(q)= $g 

1 ) 12 = - v---x ’ 
tt1 = 1 - Eq.2 (2.2) 

To obtain the complete solution of the explosion problem it is necessary to determine 

functions Rs MY f (A, q), g (31, q) and h (a, q) inside the square 0s h < ‘i and 

o<q<‘l intheplaneh,q. These functions must satisfy the following boundary and 

initial conditions : 

f(l,q)= & (1 - q), g (1, 4) T= h(1, 4) = ‘1, i (0, q) = 0 

f (A, 0) = fo (h), g (J”9 0) = go @)7 I1 (h, 0) = 11, (h) (2.3) 

where f. (A), go (h) and ho (A) are known functions which for q = 0 correspond to 

the self-similar problem CZ]. 
For o < v the mass of gas in the spherical volume which contains the coordinate 

origin, and the rate of shock wave propagation is at the initial stage finite n]. If 0 < Y 
and v -x > 0, then at the initial explosion stage q is small, hence we can seek the 

linearized solution of the form [3] 

f (A, 4) = fo (A) -t clfl (A) + * * . 
g(hq)=go(Q+qg,(~)+**. 
IL (A, q) = h,(h) _1- Q/l, (I”) $- * . . (2.4) 

Substituting in the system of Eqs. (2.1) the expressions for f (A,, q), g (h, q) and 
h (h, q) from (2.4) and neglecting terms of the order 9” and higher, iYe obtain for the 

determination of functions fi (h), gi (h) and h, (h), and constant A, a system of linear 

differential equations of the form 
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(Cont. ) gof1’ + (fo - A) a + (y go + a+ + 
+(2$ to+ri++ ) 2 

--o g1- 
(7 - 1) n go = O 

Ml’ + (fo - V hi’ + (h,’ + r + h,) fl + r (far -!- JJ+ fo)hl + 

++(A,+))II,-Xxhl = 0 
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Let us transform system (2.5) to a form more convenient for subsequent analysis. For 
this we introduce the unknown functions F (h), G (a) and H (h) which we relate to 

fl (A), gr (h) and h, (h) by formulas 

fr (A) = (f, - A) F (A), g, (A) = g,G (A), h, (A) = h,H (A) (2.6) 

After transformation of (2.6), we obtain the system of equations in the new unknown 

formulas 

‘2 (7 - 1) ho uo - hJ2 F’ + (T _ 1)” R” 
- H’ + (f. - h) (2f0’ - 1 + 7 + &.\ F + 

+ 
2 (r ‘- 1) IL”’ 
(T + I )” fill H -t [Vi, - 1) fo’ + o ; ’ --$&pi 

, by - (r - I)’ h”’ 
-i- 7 (Y ;- 1)” g,, 

-t 3; foA, = 0 

(f. - h) F’ + (f. - A) G’ + (f’,, -- 1) F + (+ + $)(fo - a) F + (2.7) 

+ (~il,+fn'+~-o,)G+(I,,-a)~ G- 2 (-r--1)n 1 O 

y (fO - A) F’ + (f. - 1) H’ + (fo - 1) yF -1. (fo - A) [ !$ t I-’ q] F + 

+ VII - h)$ H + r [f”! + +&x]+$ (A+-? =o 

with boundary conditions 

F(1) = &, G (1) = 0, H (1) = 0 (2.8) 

In the general case (arbitrary o) the solution of the linearized problem of explosion 
reduces to numerical integration of the system of Eqs. (2.7) with boundary conditions 

(2.8). The coefficients of this system are determined by-the self-similar solution of 

the problem. If, however, 
(0 = or = 3y -22f(2---1 .- 

r+l (2.9) 

a closed solution can be obtained, since for this value of w the self-similar solution has 
the simple form 

go (h) = hv-2, h,(h) = h” (2.10) 

Substituting the expressions for f,, (h), g, (h) and h, (h) from (2.10) for the coeffici- 
ents in Eqs. (2.7), we obtain a system of three ordinary inhomogeneous equations with 
coefficients dependent on parameters y and Y 

2.F’ -+- &AH, +&H - $4) [Is + (+ + 26, - 2) (7 + I)] F + 

+l (“f - 1)” [2(1--7)-(~--b,~(r+l)lG+ 
#’ 
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f- ” [ 47 - 0 - 1Y 
0 112 7 

+ ----Al- T + 1 1 =o 
vn 

(2.11) 

W+hG’+2(v-l)F- y~2(2~+~-l)[j+b,--]G+ 2(T+i)=0 
(r - l)“n 

where bs = (o - X) / 2, b, = - o and b, = - X. If In h is taken as the inde- 
pendent variable, (2.11) becomes a system of equations with constant coefficients. In 
the general case the characteristic equation of system (2.11) for y = S and Y = 2, 3 
is cubic, while for v = 1 and any y it separates into a linear and a quadratic equation. 

Having derived the solution of system (2.11). we revert to the original unknown functions 
with the use of formulas (2.6) and obtain 

flW = +$ h [CL1 + cJbkt + C*hk’ + C,hk”] 

g1@) = IL"-2 a3 + 
(h +2v - 2)(T - 1) 

y(r + 1) - h(T-- 1) + 2(Y-- l)(r - 3) CJUk’ + 

+ 
(k2 + 2v - 2)(T - 1) 

v (T + i) - kz (T - 2) + 2 (Y - 1) (r - 3) 
Cab”’ + 

(ks + 2Y - 2) (r - 1) 
+ y (T + i) - ks (T -i)+2(v-l)(r-3)CsAks] 

hl(V = A" [a3 +y(I+I)~lk~~~v~~~~)~I:-_::7 (T_ ,)Clhk' + (2.12) 

+ 
[k2T +ytr + 111 (T - 1) 

y 0 + 1) - h 0 - 1) + 2 6 - 1) T (T - 3) 
CahkS + 

+ 
[ksr + v (r + i)l (7 - 1) 

v (T + i) - ka (T - 1) + 2 (v - 1) r (T - 3) 
C3PS] 

where ci, Cs and C3 are arbitrary constants, k,, k, and k, are the roots of the cha- 

racteristic equation of the system (2. ll), and 

oi = Bd + Aiux, i=i, 2, 3 

B = v + @I, D = 2 (2~ + Y - 1) + (b, + 1 ln - v) (T C 4) 

B1 = 2TBBa-(T--)/n BDsflIn 
2YT 0 - 1) 

, n,= v(r__l) , D,=2yy$-$““J 

B,= ’ ( 
w (T - 1) D ~T(~--)BB,+~~~~T(T+~)-(~--)(~--)I) 

B, = $ [(y - 1)2 - 473 D (y - 1) - $[I - 7 - (7 + 1) (& - b3)] x 

X ~(7+l)yr-(V--“n(T-1’]-~[4+(r+1)(~_Cb,-1)]$ 

D, = z$- [4+(~+1)(&i_b,-l)]~-~~- 

_ /t(Y--I) 
[l-T--_T+~)(&-b,)lf 

A=2v2(~-l)2~-(~-l)[4+(~++&1+b,\JlBD+ 

f4(v- 1)[1-T- (r + I)(& - q B 

Constants C1, C,, C, and Al are determined by the boundary conditions for functions 
fl (A), g1 (A) and h, (A). Having determined Al, we find R, (4) and r (q). For a self- 
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similar solution the following relationships are valid : 

R,(q) = A&f”, z(q) = 6AOmq’1’q, A, = 5 , b= 2 
v+2--0 

(2.13) 

Taking into consideration (2.13). from (2.4) for the linearized problem we obtain 

R, (y) = A,,vn exp (rzArq), z(q) = k40mq7r’S [i + $ A,81 (2.14) 

Curves of functions fs (A), g, (A) and hr (A,) determined by formulas (2.12) and bound- 
ary conditions are shown in Figs. 1-3 for several Y, y. and 7. 

Fig. 1 

Fig. 2 

Curves of h,, fI and gl in Figs.1 and 2 define the difference between the calculated 
pressure, velocity and density and their respective self-similar values for various laws of 
distribution of initial density and pressure for spherical (Fig. 1, v =: 13) and cylindrical 
(Fig. 2, Y = 2) symmetry for ‘r = 3, 7 and j/ 3; related values df o are determined by 
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formula (2.9). In Fig. 1 the solid lines relate to ~==3 and z=O, dash lines to +I = 5 
and ^rl = I/S, and the dot-dash lines to 7 = 1.5 and x = 2.5. In Fig. 2 solid lines relate to 

7=3 and x = 0, dash lines to r = I and x = -1, and the dot-dash lines to ; == 5/3 and 

?L = 1. Curves of hr, f, and g, calculated for constant initial density 

D ID 

but varying initial 

Fig. 3 

pressure appear in Fig. 3 for Y = :< and r = 7, with the /r curve shown by dash lines. 

3. Solution of the nonlinerrized problem, At the initial explosion 

stage, when the explosion wave is still fairly strong (for small 9) , the motion of gas is 
defined by a linearized solution which can be used for specifying initial conditions 
necessary for calculating the complete non-self-similar problem by the approximate 

analytical or numerical method [7, 10, 121. 
Solution of the complete non-self-similar problem of explosion involves finding a 

solution of system (1.1) which would satisfy the boundary and initial conditions (1.2)- 

(1.5). The determination of functions & (2). p2 (t) and I)~ (2) defined by Eqs. (1.2) 
is tantamount to determining the shock wave radius r, (t). To do this, it is necessary to 

introduce a formula which would relate the explosion energy E, to parameters at the 
shock wave front. This relation can be expressed in terms of the energy conservation 
law, according to which the total energy of moving gas is, at every instant of time, equal 

to the sum of the initial energy of gas set in motion by the explosion and the energy E,, 
of the explosion. We pass to dimensionless variables (1.8) in the law of total energy 
conservation and assume in what follows that the constant X = o in the formula(0.1) 
of initial pressure distribution. We obtain 

[T$(+)‘(+-) A'-'dh + +\! f$?dh] 
0 ; 

ij,,-2n(v-l)-+(v-2)(v-3) (3.1) 

The law of total energy conservation is convenient for determining the shock wave radius 

r2 (t), when the solution of the system of Eqs. (1.1) has been found. System (1.1) with 
conditions (1.2)-(1-S) has a solution with all unknown functions of gasdynamic parame- 
ter distribution in explicit form, provided the dependence of the Euler coordinate r on 
t and on the Lagrangian coordinate E is known. 
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let us seek r in the form 
(3.2) 

As the Lagrangian coordinate we take the initial coordinate of particle g. Since at the 
instant of the shock wave passing through the particle the Lagrangian coordinate E = rs, 
the coefficients in (3.2) are 

b = 0, c (t) = pt) (3.3) 
Using (3,A) and (3.3) from the law of mass conservation expressed in the differential 
form, we obtain 

(3.4) 

a(t)=v(.+) -to+ u,(t)= e (3.5) 

In the following we assume that the density distribution within the shock wave is deter- 

mined by formulas (3.4) and (3.5). From the second equation of system (1.1) we can 
now determine the velocity and from the first, the pressure of gas. The third equation 

of system (1. l), the equation of energy, may be used for determining the shock wave 

radius r2 (t) . However the law of total energy conservation (3.1) is more convenient 
for determining this radius throughout the region of perturbed motion within the shock 
wave. We substitute the expression (3.4) for p (r, t) into the second equation of system 
(1.1) and, taking into account the boundary condition (1.4) at the center, solve it for the 

velocity. We obtain 
u (r, t) = 0.2 (t) +- - a (t)r.,_ v $- In +- (3.6) 

We substitute the expressions (3.4) and (3.6) for p (r, t) and u (r, t) , respectively, into 

the first of Eqs.(l. 1) and solve it for the pressure, taking into account the boundary con- 
dition at the shock wave. We obtain 

where 

Formulas (3.4). (3.6) and (3. ‘7) which define the distribution of dimensionless parameters 
of motion in the perturbed region can, after some transformation, be written as 

H, = _ 2 (Y + 1) Rq dq 
(1 - 9”) II, df(z 
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,, : 2. 
C’ ’ 

I/. L -( - 1 _}- ‘J ,“, 51 = :! (v - 11,) \~- (v :- ” - ,,)) (r - 1) $- “7’ 

Solution (3.8) satisfies all boundary conditions and is expressed in terms of parameters 

at the shock wave front and the front coordinate r2 (t), The time / does not explicitly 

appear in this solution. It is evident from formulas (3.8) and (1.2) that all characteris- 

tics of motion of gas in the perturbed region can be expressed in tertns of function r’_’ (t) 

Subjecting solution (3.8) to the law of total energy conservation (3.1). we obtain the 

equation which can be used for determining the law of shock wave motion 

For the numerical integration of Eq.(3. 9) we reduce it to a system of two first order 

equations. Taking the parameter 7 z= o / c as the independent variable and Kz (~1) and 

0 ID 

Fig. 4 

Fig. 6 Fig. I 

2 
0 05 If? 

Fig. 5 

o (q) = dcl I Ma, as the unknown functions, after some transformations we obtain 
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v (T - 1) Q% owq 
47 (r + 1) LT~,R~+=-~ + 4 (Y -- co) (T + Ij aR2 

dRa 1 -=- 
dq = 

The initial condition for the solution of system (3.10) is to be defined at point Q = 0, 

RP - 0, This is a singular point in the neighborhood of which the asymptotic behavior 
is defined by 

q = C,R;-+, 
6,7 [2 (r - i) (7 - 3) - 3 (v - 0) (r + 111 

G2= Y(Ta-l)[2(v - w) + (v + 2 - 0) (+f - i)l 
(3.11) 

The system of Eqs.(S. 10) was integrated by the Runge-Kutta method for the asymptotics 
(3.11) for spherical symmetry (v = 3) and several values of the adiabatic exponent +r 

and exponent o in the laws of density and pressure distribution. 
The distribution of dimensionless pressure fields for r = S/S and +r = 1.4 are shown, 

respectively, in Figs.4 and 5 for values of parameters q and o (solid lines relate to o = 

0.5 and dash lines to o = 0.33). The distribution of dimensionless density is shown in 
Fig.6 for 7 = 5/3 and several values of q and o (o = 0.5; 0.33). Dimensionless velo- 

cities for o = 0.5 and several values of q and r are shown in Fig. 7, where solid lines 
relate to ‘r = 1.4 , and the dash lines to r = I/s). Figures 4 and 5 show that for a given 

7 the variation of dimensionless pressure with decreasing o is nonmonotonic. while it 
can be seen from Fig.6 that the dimensionless density decreases with decreasing o . 

Figure 7 shows that for a specified o = 0.5 dimensionless velocities increase with in- 
creasing 7. 
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A wave motion generated on the surface of a heavy incompressible fluid by 
oscillations of a section of the bottom of a tank with a dock is studied. The 

problem of waves generated by an oscillating section of the bottom of a tank 

was dealt with in p, 21. In the present paper the Wiener-Hopf method [3] is 
employed to solve the analogous problem in which the boundary conditions 
have been altered, namely, a part of the free surface is covered with an immo- 
vable rigid plate. An expression for the velocity potential describing the mo- 

tion of the fluid in the problem under consideration is derived. The results of 
r2, 4, 51 are found to be particular cases of the solution obtained here. The 

numerical example given shows that the rise of the free surface is smaller on 
the dock side than that at the corresponding point at the side opposite to the 

oscillating section of the bottom. 

1. An immovable rigid plate is situated at the surface of a fluid of finite depth h , 
occupying the region y = h, x ,( - 1 and - 00 < z < 00. The coordinate origin 
is placed at the bottom of the tank and the y-axis is directed vertically upwards. The 

section y = 0, 0 < x < a: -- 00 < z < co of the bottom undergoes vertical dis- 

placement according to the law 

y = Re [/I (z) exp i (kz - cot)] 

where I’ (2) is a numerically small, smooth function. The velocity potential p (I, y. 
z, t) which in this case describes the motion of the fluid, must satisfy the following 
boundary value problem 

AF(z, y,z,t)=(i (nsy~h,--<<~<,-,,<z<n;l) 

d2F / at2 -t gaF / ay = 0 when y = h, X>---I, --<Z<W 

tlFii)y=(~ when !,=h, s<-l, -y><z<m (1.1) 

aFlay = 
i 
- co Re [icl (2) exp i (k - o’)] 

,O (--<x<<,fl<~<=) 


